2С108К, Стабилитрон полупроводниковый

для приобретения (купить, заказать) данного товара напишите нам на sales@iElekt.ru или перейдите по ссылке на страницу покупки заинтересовавшего Вас товара: ЗАКАЗАТЬ

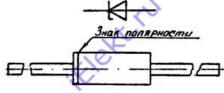
Вернуться на "главную" страницу сайта ГЛАВНАЯ

Согласовать цену, уточнить наличие и условия поставки компонентов или связаться с менеджером. Перейдите в раздел КОНТАКТЫ

2С108К стабилитрона прецизионного:

2С108К — стабилитроны полупроводниковые эпитаксиальнопланарные термическикомпенсированные класса 0,02 предназначены для использования как источник базового напряжения в сверхточных устройствах. Климатическое исполнение УХЛ диода Зенера: 2) соответствует ГОСТ 22468-77 и техусловиям аА 0.3 39.436ТУ. Используются в радиоэлектронной аппаратуре широкого спектра применения. Марка и схема соединения электродов с контактами наносится на корпусе. Полупроводниковый стабилитрон артикул согласно ГОСТ.

Ссылки на технические материалы


ссылки на 2С108К дополнительный материал:

CODE IN COLUMN TO TO TO THE COLUMN TO TO THE COLUMN TO THE												
карта	фото	схема выводов										
значение выводов	параметры	предельные параметры										
эксплуатация	PDF											

Знак завода изготовителя

Схема расположения и назначение выводов

Вес не превышает 0,5г.

Основные электро параметры при t=25+-10 градусов Цельсия

основные 2С108К (и других типономиналов) электро параметры:

Наименование параметра, единица		Пока	ватели д			•				•	•							
	Обозн. букв.	Α		Б		В		Γ		Д		E		E		Ж		
замера, режим замера	Оукь.	>=	<=	>=	<=	>=	<=	>=	<=	>=	<=	>=	<=	>=	<=			
Разброс вольтажа стабилизации от номинала заданного значения Ucтa6=6,4V, %	^Истаб	-5	+5	-5	+5	-5	+5	-5	+5	-5	+5	-5	+5	-5	+5			
Дифференциальное сопротивление в диапазоне температур среды: с - 60 по +60оС, От.	гстаб		15		15		15		15		15		15		15			
+125oC, Om.			40		40		40		40		40		40		40			
Дифференциальное сопротивление при минимальном токе	гстаб1		70		70		70		70		70		70		70			

3mA, Om															
Кратковременная неустойчивость напряжения стабилизированного 2C108К (и других типономиналов) за случайно выбранные пять тысяч часов в пределах суммарной минимальной отработки, при температуре среды: с -5 по +50оС, mV	бИст1	,	·	,	·	,	ŕ	,	,	ŕ	,	-1,3	+1,3	ŕ	+1,3
с -60 по +125oC, mV		-3,2	+3,2	-3,2	+3,2	-3,2	+3,2	-3,2	+3,2	-3,2	+3,2	-3,2	+3,2	-3,2	+3,2
Кратковременная неустойчивость напряжения стабилизированного за случайно выбранные одну тысячу часов в пределах суммарной минимальной отработки, гарантированная атестатом, mV	бИст2							-0,64	+0,64	-0,64	+0,64	-0,64	+0,64	-0,32	+0,32
Температурный уход напряжения стабилизированного в диапазоне температуры среды от -5 до +60oC, mV.	^Ист	-8,4	+8,4	-4,2	+4,2	-2,1	+2,1	-8,4	+8,4	-4,2	+4,2	-2,1	+2,1	-8,4	+8,4
Температурный коэффициент напряжения стабилизированного, усредненный при температуре среды с -5 по +60оС, %/оС.	аUст	- 0,002	+0,002	- 0,001	+0,001	- 0,0005	+0,0005	- 0,002	+0,002	- 0,001	+0,001	- 0,0005	+0,0005	- 0,0002	+0,0002
Амплитуда низкочастотных шумов в диапазоне частот от 0,01 до 1Hz, uV	Uш								40		40		40		40

основные электро параметры:

основные электро параметры.															
Наименование		Показ	затели д	допуска											
		И		К		Л		M		Н		П		P	
	Обозн. букв.	>=	<=	>=	<=	>=	<=	>=	<=	>=	<=	>=	<=	>=	<=
Разброс вольтажа стабилизации от номинала заданного значения Ucтa6=6,4V, %	^Истаб	-5	+5	-5	+5	-5	+5	-5	+5	-5	+5	-5	+5	-5	+5
Дифференциальное сопротивление в диапазоне температур среды: с -60 по +60oC, Om.	гстаб		15		15		15		15		15		15		15
+125oC, Om.			40		40		40		40		40		40		40
Дифференциальное сопротивление при минимальном токе 3mA, Om	гстаб1		70		70		70		70		70		70		70
Кратковременная неустойчивость напряжения стабилизированного за случайно выбранные пять тысяч часов в пределах суммарной	бИст1	-1,3	+1,3	-1,3	+1,3	-1,3	+1,3	-1,3	+1,3	-1,3	+1,3	-1,3	+1,3	-1,3	+1,3

минимальной отработки , при температуре среды: с -5 по +50оС, mV															
с -60 по +125oC, mV		-3,2	+3,2	-3,2	+3,2	-3,2	+3,2	-3,2	+3,2	-3,2	+3,2	-3,2	+3,2	-3,2	+3,2
Кратковременная неустойчивость 2C108К (и других типономиналов) напряжения стабилизированного за случайно выбранные одну тысячу часов в пределах суммарной минимальной отработки, гарантированная атестатом, mV	6Uст2	-0,32	+0,32	-0,32	+0,32	-0,13	+0,13	-0,13	+0,13	-0,07	+0,07	-0,07	+0,07	-0,035	+0,035
Температурный уход напряжения стабилизированного в диапазоне температуры среды от -5 до +60oC, mV.	^Ист	-4,2	+4,2	-2,1	+2,1	-4,2	+4,2	-2,1	+2,1	-4,2	+4,2	-2,1	+2,1	-2,1	+2,1
Температурный коэффициент напряжения стабилизированного, усредненный при температуре среды с -5 по +60oC, %/oC.		- 0,001	+0,001	- 0,0005	+0,0005	- 0,001	+0,001	- 0,0005	+0,0005	- 0,001	+0,001	- 0,0005	+0,0005	- 0,0005	+0,0005
Амплитуда низкочастотных шумов в диапазоне частот от 0,01 до 1Hz, uV	Uш		40		40		40		40		40		40		25

Примечания. Параметры ^Uct, 6Uct1, 6Uct2, rct, ^UctQ, Uш - измеряются при номинальном токе стабилизации Ict=7,5 мА.

Предельные 2С108К параметры

© ЭЛЕКТ (iElekt.ru) - радиодетали и электронные компоненты оптом со склада в Санкт-Петербурге и на заказ, отечественных и зарубежных производителей почтой во все регионы России Доставка в города: Нальчик, Нарьян-Мар, Вологда, Курск, Краснодар, Липецк, Сыктывкар, Омск, Симферополь, Санкт-Петербург, Петропавловск-Камчатский, Воронеж, Киров, Пермь, Горно-Алтайск, Псков, Салехард, Волгоград, Владимир, Нижний Новгород, Ульяновск, Пенза, Калуга, Саранск, Челябинск, Грозный, Московская область, Уфа, Владивосток, Кызыл, Томск, Чита, Казань, Смоленск, Элиста, Тула, Астрахань, Екатеринбург, Дудинка, Курган, Якутск, Иркутск, Новосибирск, Калининград, Барнаул, Кемерово, Ростов-на-Дону, Хабаровск, Ставрополь, Ханты-Мансийск, Абакан, Владикавказ, Магадан, Рязань, Красноярск, Оренбург, Биробиджан, Благовещенск, Магас, Великий Новгород, Белгород, Южно-Сахалинск, Тюмень, Петрозаводск, Чебоксары, Кострома, Ярославль, Орел, Анадырь, Махачкала, Майкоп, Самара, Черкесск, Мурманск, Йошкар-Ола, Ижевск, Москва, Тамбов, Улан-Удэ, Иваново, Архангельск, Тверь, Брянск, Саратов.