1564ТМ8, Микросхема интегральная

для приобретения (купить, заказать) данного товара напишите нам на sales@iElekt.ru или перейдите по ссылке на страницу покупки заинтересовавшего Вас товара:

3AKA3ATЬ

Вернуться на "главную" страницу сайта

ГЛАВНАЯ

Согласовать цену, уточнить наличие и условия поставки компонентов или связаться с менеджером. Перейдите в раздел

1564ТМ8 микросхемы полупроводниковой:

1564TM8 — цифровая микросхема 1564-ой серии, являются транзисторной логикой с функционалом четыре D-триггера с прямыми и инверсными выходами и используются в РЭА большой области эксплуатации. Производятся в керамометаллическом корпусе. Модель изделия наносится на металлической части корпуса. Номинальное значение нагрева при эксплуатации с минус 60 по плюс 125оС. Климатически исполнены УХЛ и соответствует 2) техусловиям бК 0.347.479-18ТУ, АЕЯ P.4312 00.424-18ТУ

краткие основные характеристики:

Разброс напряжений потребления от 2V до 6V.

Предельнодопустимое напряжение потребления до 7V.

Разброс рабочих температур от минус 60 до плюс 125оС.

Наибольшая тактовая частота <=35MHz если Ucc=6V, CL =50pF, T=25 oC.

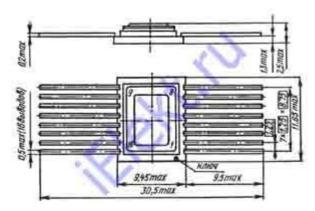
Вольтаж на выходе низшего значения <=0.26V если Ucc=6V, Io=5,2mA, T=25 oC.

Вольтаж на выходе высшего значения >=5.48V если Ucc=6V, Io=5,2mA, T=25 oC.

Предельнодопустимое знач. входного и выходного напряжений от -0.5V до (Ucc+0.5)V.

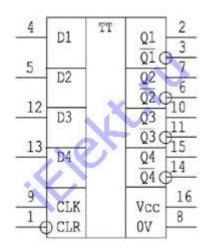
Устойчивость к влиянию спец-факторов по группам исполнения: 7 И1- 3 Ус, 7 И6- 2 Ус, 7 И7- 5 Ус, 7 С1- 1 Ус, 7 С4- 5 Ус, 7 К1- 1 К, 7 К4- 1 К для разброса напряжения потребления от 2V до 6V. 7 И1- 3 Ус, 7 И6- 2х 5Ус, 7 И7- 5 Ус, 7С1- 4Ус, 7 С4- 5 Ус, 7 К1- 1 К, 7 К4- 1 К для разброса напряжения потребления от 3V до 6V.

Ссылки на технические материалы


ссылки на 1564ТМ8 дополнительный материал:

карта	фото	условное графическое обозначение
значение выводов	<u>характеристики</u>	таблица истинности
<u>эксплуатация</u>	PDF	

Знак завода изготовителя



Расположения выводов схематическое

Корпус типа 402.16-33, масса меньше 1,5 г.

Условное графическое обозначение

Таблица истинности

Е	Входы	(оды		Выходы		
CLR	CLK	D	Q	Q		
L	X	X	L	H		
Н	1	Н	Н	T		
Н	1	L	LSC	H		
Н	L	X	QO	QO		

Н - высокий уровень

L - низкий уровень

Х - любое состояние

переход с низкого уровня на высокий

Q0, Q0 - предыдущее состояние

Микросхема интегральная значение выводов

таблица 1564ТМ8 значения выводов:

таолица тэратга значения выводов:							
Номер контакта	Обозначение контакта	Обозначение контакта (согласно электро схемы)	Назначение	Номер контакта	Обозначение контакта	Обозначение контакта (согласно электро схемы)	Назначение
1	CLR	CLR	Вход установки /0/	9	CLK	CLK	Вход тактовый
2	Q1	Q1	Выход первого триггера	10	Q3	Q3	Выход третьего триггера
3	Q1 (инв)	QN1	Выход инверсный первого триггера	11	Q3 (инв)	QN3	Выход инверсный третьего триггера
4	D1	D1	Вход первого триггера	12	D3	D3	Вход третьего триггера
5	D2	D2	Вход второго триггера	13	D4	D4	Вход четвертого триггера
6	Q2 (инв)	QN2	Выход инверсный второго триггера	14	Q4 (инв)	QN4	Выход инверсный четвертого триггера
7	Q2	Q2	Выход второго триггера	15	Q4	Q4	Выход четвертого триггера
8	OV	0V	Общий	16	Vcc	Vcc	Питание

Основные электрические характеристики при t=25+-10 градусов Цельсия

таблица основных 1564ТМ8 электро параметров:

Наименование характеристики, единица замера, режим замера	Обозначение буквами	Норма больше меньше		Температура
Наибольшее выходное напряжение низшего значения, V, если: Ucc=2,0V, Uiл=0,3V, Uiн=1,5V, Io=20uA Ucc=4,5V, Uiл=0,9V, Uiн=3,15V, Io=20uA Ucc=6,0V, Uiл=1,2V, Uiн=4,2V, Io=20uA	оуквами	-		25+-10 -60 125
Ucc=4,5V, Uiл=0,9V, Uiн=3,15V, Io= 6,0mA	U OL max	-	0,4	25+-10 -60 125 25+-10

Ucc=6,0V, Uiл=1,2V, Uiн=4,2V, Io= 7,8mA		-	0,4	-60
			0,4	125
Наименьшее выходное напряжение 1564TM8 высшего значения, V, если: Ucc=2,0V, Uin=0,3V, Uiн=1,5V, Io=20uA		1,9		25+-10
Ucc=4,5V, Uiл=0,9V, Uiн=3,15V, Io=20uA		4,4	-	-60
Ucc=6,0V, Uiл=1,2V, Uiн=4,2V, Io=20uA		5,9		125
		4,0		25+-10
Ucc=4,5V, Uiл=0,9V, Uiн=3,15V, Io= 6,0mA	U OH min	3,7	-	-60
		3,7		125
		5,48	-	25+-10
Ucc=6,0V, Uiл=1,2V, Uiн=4,2V, Io= 7,8mA		5,2	-	-60
		5,2	-	125
		-	/-0,1/	-60
Ток на выходе низшего значения, uA, если: Ucc = $6.0V$, Uiн = Ucc, Uiл = $0V$	I IL	-	/-0,1/	25+-10
		-	/-1,0/	125
		-	0,1	-60
Ток на выходе высшего значения, uA, если: Ucc = $6.0V$, Uiн = Ucc, Uiл = $0V$	I IH	-	0,1	25+-10
		-	1,0	125
		-	8,0	25+-10
Ток потребления , uA, если: Ucc = 6,0V, Uiн = Ucc, Uiл =0V	Icc	-	160	-60
		-	160	125
Динамический ток потребления, mA, если: Ucc = 6,0V, f = 1,0MHz	I OCC	-	0,75	25+-10
		6		25+-10
Наибольшая тактовая частота, MHz, если: Ucc=2,0V, CL =50pF		4	-	-60
		4		125
		30		25+-10

Ucc=4,5V, CL =50pF	fcmax	20	-	-60
		20		125
		35		25+-10
Ucc=6,0V, CL =50pF		24	_	-60
		24		125
Продолжитоль пость промодления распродолжя			210	25+-10
Продолжительность промедления распределения сигнала 1564TM8 при включении (выключении), ns,		-	225	-60
если Ucc=2,0V, CL =50pF			225	125
	t PHL1		42	25+-10
Ucc=4,5V, CL =50pF	(t PLH1),	-	45	-60
	t PHL2 (t PLH2)		45	125
			37	25+-10
Ucc=6,0V, CL =50pF		-	50	-60
			50	125
			175	25+-10
если: Ucc=2,0V, CL =50pF		-	242	-60
			242	125
			35	25+-10
Ucc=4,5V, CL =50pF	t PHL3	-	49	-60
	(t PLH3)		49	125
			30	25+-10
Ucc=6,0V, CL =50pF		-	42	-60
			42	125
			15,0 вывод	
Входная емкость, pF, если Ucc = 0V	Ci	-	9 10,0	25+-10
			выводы	

tpнL1, tpLн1 – от входа CLK к выходам Q tpнL2, tpLн2 – от входа CLK к выходам Q (инв) tpнL3, tpLн3 – от входа CLR к выходам Q и Q (инв)

Предельные 1564ТМ8 характеристики

© ЭЛЕКТ (iElekt.ru) - радиодетали и электронные компоненты оптом со склада в Санкт-Петербурге и на заказ, отечественных и зарубежных производителей почтой во все регионы России Доставка в города: Нальчик, Нарьян-Мар, Вологда, Курск, Краснодар, Липецк, Сыктывкар, Омск, Симферополь, Санкт-Петербург, Петропавловск-Камчатский, Воронеж, Киров, Пермь, Горно-Алтайск, Псков, Салехард, Волгоград, Владимир, Нижний Новгород, Ульяновск, Пенза, Калуга, Саранск, Челябинск, Грозный, Московская область, Уфа, Владивосток, Кызыл, Томск, Чита, Казань, Смоленск, Элиста, Тула, Астрахань, Екатеринбург, Дудинка, Курган, Якутск, Иркутск, Новосибирск, Калининград, Барнаул, Кемерово, Ростов-на-Дону, Хабаровск, Ставрополь, Ханты-Мансийск, Абакан, Владикавказ, Магадан, Рязань, Красноярск, Оренбург, Биробиджан, Благовещенск, Магас, Великий Новгород, Белгород, Южно-Сахалинск, Тюмень, Петрозаводск, Чебоксары, Кострома, Ярославль, Орел, Анадырь, Махачкала, Майкоп, Самара, Черкесск, Мурманск, Йошкар-Ола, Ижевск, Москва, Тамбов, Улан-Удэ, Иваново, Архангельск, Тверь, Брянск, Саратов.